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Ramsey Theorem

p = 2,n = 3, k = 2,N = 6

Theorem (Ramsey Theorem, 1930)

For every p,n, k ≥ 1 there exists N > 1 such that N −→ (n)p
k .

Erdös–Rado partition arrow

N −→ (n)p
k : For every partition of p-element subsets of X , |X | ≥ N into k classes (colours)

there exists Y ⊆ X , |Y | = n such that all p-element subsets of Y belongs to a single
partition. (Y is monochromatic.)
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Big Ramsey Degrees

Theorem (Infinite Ramsey Theorem, 1930)

∀p,k≥1 : ω −→ (ω)p
k,1.

In 1970’s a concept of structural Ramsey theory was introduced. A Ramsey theorem can
be seen as a theorem about the class of linear orders.

Theorem (Infinite Ramsey Theorem, 1930)

Let O be the class of all finite linear orders.

∀(O,≤O)∈O,k≥1 : (ω,≤) −→ (ω,≤)
(O,≤O)
k,1 .

A natural question: Is the same true for (Q,≤) (the order of rationals)?

∀(O,≤O)∈O,k≥1 : (Q,≤) −→ (Q,≤)
(O,≤O)
k,1 .

Sierpiński: not true for |O| = 2.
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Rich colouring of Q

Colour of k -tuple = shape of meet closure in the tree
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Big Ramsey Degrees of (Q,≤)

In late 1960’s Laver developed method of finding copies of Q in Q with bounded number of
colours using Milliken’s tree theorem.

Theorem (Devlin, 1979)

∀(O,≤O)∈O∃T=T (|O|)∈ω∀k≥1 : (Q,≤) −→ (Q,≤)
(O,≤O)
k,T .

T (n) is the big Ramsey degree of n tuple in Q.

T (n) = tan(2n−1)(0).

tan(2n−1)(0) is the (2n − 1)st derivative of the tangent evaluated at 0.

T (1) = 1,T (2) = 2,T (3) = 16,T (4) = 272,

T (5) = 7936,T (6) = 353792,T (7) = 22368256
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Trees (terminology)
• A tree is a (possibly empty) partially ordered set (T , <T ) such that, for every t ∈ T ,

the set { s ∈ T : s <T t } is finite and linearly ordered by <T . All trees considered are
finite or countable.

• All nonempty trees we consider are rooted, that is, they have a unique minimal
element called the root of the tree.

• An element t ∈ T of a tree T is called a node of T and its level, denoted by |t |T , is the
size of the set { s ∈ T : s <T t }.

• We use T (n) to denote the set of all nodes of T at level n,
• For s, t ∈ T , the meet s ∧T t of s and t is the largest s′ ∈ T such that s′ ≤T s and

s′ ≤T t .
• The height of T , denoted by h(T ), is the minimal natural number h such that

T (h) = ∅. If there is no such number h, then we say that the height of T is ω.

2<ω

0 1

00 01 10 11

000 001 010 011 100 101 110 111



Subtrees and strong subtrees

• A subtree of a tree T is a subset T ′ of T viewed as a tree equipped with the induced
partial ordering such that s ∧T ′ t = s ∧T t for each s, t ∈ T ′.

• Given a tree T and nodes s, t ∈ T we say that s is a successor of t in T if t ≤T s.
• The node s is an immediate successor of t in T if t <T s and there is no s′ ∈ T such

that t <T s′ <T s.
• We denote the set of all successors of t in T by SuccT (t) and the set of immediate

successors of t in T by ImmSuccT (t).

Definition (Strong subtree)

A subtree S of a tree T is a strong subtree of T if either S is empty, or S is nonempty and
satisfies the following three conditions.

1 The tree S is rooted and balanced.
2 Every level of S is a subset of some level of T , that is, for every n < h(S) there exists

m ∈ ω such that S(n) ⊆ T (m).
3 For every non-maximal node s ∈ S and every t ∈ ImmSuccT (s) the set

ImmSuccS(s) ∩ SuccT (t) is a singleton.
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Strong subtree
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Definition

A subtree S ⊆ T is a subset closed for meets. It is strong if:

1 S has a root node.

2 ∀s ∈ S either s is leaf or ∀t ∈ ImmSuccT(s) the set ImmSuccS(s) ∩ SuccT(t) is a singleton.

3 Every level of S is a subset of some level of T .

4 S either has no leaves or all are at the same level.



Strong subtree

0 1

00 01 10 11

000 001 010 011 100 101 110 111

Definition

A subtree S ⊆ T is a subset closed for meets. It is strong if:

1 S has a root node.

2 ∀s ∈ S either s is leaf or ∀t ∈ ImmSuccT(s) the set ImmSuccS(s) ∩ SuccT(t) is a singleton.

3 Every level of S is a subset of some level of T .

4 S either has no leaves or all are at the same level.



Strong subtree

0 1

00 01 10 11

000 001 010 011 100 101 110 111

Definition

A subtree S ⊆ T is a subset closed for meets. It is strong if:

1 S has a root node.

2 ∀s ∈ S either s is leaf or ∀t ∈ ImmSuccT(s) the set ImmSuccS(s) ∩ SuccT(t) is a singleton.

3 Every level of S is a subset of some level of T .

4 S either has no leaves or all are at the same level.



Strong subtree

0 1

00 01 10 11

000 001 010 011 100 101 110 111

Definition

A subtree S ⊆ T is a subset closed for meets. It is strong if:

1 S has a root node.

2 ∀s ∈ S either s is leaf or ∀t ∈ ImmSuccT(s) the set ImmSuccS(s) ∩ SuccT(t) is a singleton.

3 Every level of S is a subset of some level of T .

4 S either has no leaves or all are at the same level.



Strong subtree

0 1

00 01 10 11

000 001 010 011 100 101 110 111

Definition

A subtree S ⊆ T is a subset closed for meets. It is strong if:

1 S has a root node.

2 ∀s ∈ S either s is leaf or ∀t ∈ ImmSuccT(s) the set ImmSuccS(s) ∩ SuccT(t) is a singleton.

3 Every level of S is a subset of some level of T .

4 S either has no leaves or all are at the same level.



Strong subtree

0 1

00 01 10 11

000 001 010 011 100 101 110 111

Definition

A subtree S ⊆ T is a subset closed for meets. It is strong if:

1 S has a root node.

2 ∀s ∈ S either s is leaf or ∀t ∈ ImmSuccT(s) the set ImmSuccS(s) ∩ SuccT(t) is a singleton.

3 Every level of S is a subset of some level of T .

4 S either has no leaves or all are at the same level.



Strong subtree

0 1

00 01 10 11

000 001 010 011 100 101 110 111

Definition

A subtree S ⊆ T is a subset closed for meets. It is strong if:

1 S has a root node.

2 ∀s ∈ S either s is leaf or ∀t ∈ ImmSuccT(s) the set ImmSuccS(s) ∩ SuccT(t) is a singleton.

3 Every level of S is a subset of some level of T .

4 S either has no leaves or all are at the same level.



Strong subtree

0 1

00 01 10 11

000 001 010 011 100 101 110 111

Definition

A subtree S ⊆ T is a subset closed for meets. It is strong if:

1 S has a root node.

2 ∀s ∈ S either s is leaf or ∀t ∈ ImmSuccT(s) the set ImmSuccS(s) ∩ SuccT(t) is a singleton.

3 Every level of S is a subset of some level of T .

4 S either has no leaves or all are at the same level.



Strong subtree

0 1

00 01 10 11

000 001 010 011 100 101 110 111

Definition

A subtree S ⊆ T is a subset closed for meets. It is strong if:

1 S has a root node.

2 ∀s ∈ S either s is leaf or ∀t ∈ ImmSuccT(s) the set ImmSuccS(s) ∩ SuccT(t) is a singleton.

3 Every level of S is a subset of some level of T .

4 S either has no leaves or all are at the same level.



Ramsey-type theorem for strong subtrees

Let T be a tree and k ∈ ω+ 1. We use Strk (T ) to denote the set of all strong subtrees of T
of height k .

Theorem (Milliken 1979)

For every rooted, balanced and finitely branching tree T of infinite height, every k ∈ ω and
every finite colouring of Strk (T ) there is S ∈ Strω(T ) such that the set Strk (S) is
monochromatic.

The difficult case to prove is k = 1 (Halpern–Läuchli Theorem, 1966)

0 1

00 01 10 11

000 001 010 011 100 101 110 111

Notice that for regularly branching tree the strong subtree is isomorphic to the original tree.
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Big Ramsey degrees using Milliken tree theorem

We aim to prove:

Theorem (Laver, late 1969)

∀(O,≤O)∈O∃T=T (|O|)∈ω∀k≥1 : (Q,≤) −→ (Q,≤)
(O,≤O)
k,T .

Easy case |O| = 1:
1 Nodes of the binary tree 2<ω ordered

“from left to right” yields (Q,≤).

2 Finite colouring (Q,≤) gives a finite colouring of
the nodes of the infinite binary tree.

3 Using the Halpern–Läuchli’s theorem we can find
a strong subtree which is monochromatic.

4 Strong subtree is isomorphic to the original
binary tree and also isomorphic to (Q,≤) when
ordered lexicographically
=⇒ we found the monochromatic copy!

0 1

00 01 10 11

000 001 010 011 100 101 110 111

If |O| = n > 1 we transfer colourings of n-tuples of nodes to colouring of strong subtrees.
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“from left to right” yields (Q,≤).
2 Finite colouring (Q,≤) gives a finite colouring of

the nodes of the infinite binary tree.
3 Using the Halpern–Läuchli’s theorem we can find

a strong subtree which is monochromatic.
4 Strong subtree is isomorphic to the original

binary tree and also isomorphic to (Q,≤) when
ordered lexicographically
=⇒ we found the monochromatic copy!
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Envelopes of subsets
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• Given a subset X of tree T , an envelope is any strong subtree S of T containing X .
• Envelope is minimal if h(S) is minimized.

• Envelope can be constructed by first doing the meet-closure of X (adding at most
|X | − 1 extra levels) and then adding extra nodes as necessary to get strong subtree
(without adding new levels).

Observation

A minimal envelope of every finite X has height at most 2|X | − 1.

Multiple choices of X may lead to a same envelope. We speak of different embedding
types within a given envelope.
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Big Ramsey degrees using Milliken tree theorem

Now we can finish proof of:

Theorem (Laver, late 1969)

∀(O,≤O)∈O∃T=T (|O|)∈ω∀k≥1 : (Q,≤) −→ (Q,≤)
(O,≤O)
k,T .

Proof.

1 Fix (O,≤O) ∈ O and put n = |O|.
2 T (n) is the number of embedding types of n-tuples in the binary tree.

• Recall that height of each envelope is at most 2n − 1.
• Every embedding type is thus an suset of 2<2n.

3 Fix a finite colouring of n-tuples
4 For each embedding type construct colouring of envelopes and pass to a

monochromatic subtree by the application of Milliken tree theorem.
5 The resulting copy will have at most T (n) different colours
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Big Ramsey degrees of (Q,≤) are finite!



Devlin types

Definition (Devlin types)
A ⊆ 2<ω a Devlin embedding type iff it is an antichain and for every
0 ≤ ℓ < maxa∈A |a| precisely one of the following happens:

1 Leaf: There exists precisely one a ∈ A with |a| = ℓ.
Moreover for every b ∈ A, |b| > ℓ it holds that b(ℓ) = 0.

2 Branching: There exists a,b ∈ A, |a|, |b| > ℓ such that
a(ℓ) = 0, b(ℓ) = 1 and moreover for every c ∈ A, |c| ≥ ℓ
whose iniital segment of length ℓ is different form b it holds
that |c| > ℓ and c(ℓ) = 0.

00

110

1000

Fun fact: Number of Devlin types of size n is

tn = tan(2n−1)(0)

=
n−1∑
ℓ=1

(
2n − 2
2ℓ− 1

)
tℓ · tn−1 with n1 = 1

This is a well known sequence (of the odd tangent numbers).
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Victory!

We characterised the big Ramsey degrees of rationals and gave a closed-form formula.



Big Ramsey degrees of R

Definition

A (countable) structure A is (ultra) homogeneous if every its partial isomorphism extends
to an automorphism.

• We denote by R the Rado (or random) graph. This is the unique homogeneous and
universal countable graph. (By universal we mean that every countable graph has an
embedding to R.)

• We denote by G the class of all finite graphs.

Theorem

∀A∈G∃T=T ′(A)∈ω∀k≥1 : R −→ (R)A
k,T .

A finitary version is (probably more) famous!

Theorem (Nešetřil–Rödl 1977, Abramson–Harington 1978)

∀A∈G∃t=t(A)∈ω∀B∈G,k≥1∃C ∈ G : C −→ (B)A
k,t .
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in 2010.

A finitary version is (probably more) famous!
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Understanding the unavoidable colourings

While trying to formulate Ramsey-type theorem it is good to check if there are any
unavoidable colourings and if so understand their structure.
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For (Q,≤) we have the Sierpiński colourings.
Can we do something similar for the Rado graph?
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Passing number graph
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Definition (Graph G)

We will consider graph G:
1 Vertices: 2<ω

2 Vertices a,b ∈ 2<ω satisfying |a| < |b| forms and edge if and only if b(|a|) = 1.
3 There are no other edges.
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The upper bound

Lemma

G is universal: the Rado graph R embeds to G.

Proof.

Assume that the vertex set of R is ω. The vertex i ∈ ω then corresponds to a sequence a
of length i with a(j) = 1 if and only if i ∼ j .

Lemma

The definition of G is stable for passing into a strong subtrees: if S is a strong subtree of
2<ω then it is also a copy of G in G

We thus can repeat precisely the same proof as before to obtain the upper bound on big
Ramsey degrees.

Theorem

∀A∈G∃T=T ′(A)∈ω∀k≥1 : R −→ (R)A
k,T .

Lower bounds needs a bit more care.
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Big Ramsey degrees of the universal triange-free graph
Let T be the class of all finite triangle-free graphs.

We aim to give an easy proof of:

Theorem (Dobrinen 2020)

Every (countable) universal triangle-free graph T has finite big Ramsey degrees:

∀A∈T ∃T=T (A)∈ω∀k≥1 : A −→ (T)(A)
k,T .

Universality: every countable triangle-free graph has embedding to T.

N. Dobrinen. The Ramsey theory of the universal homogeneous triangle-free graph.
Journal of Mathematical Logic, 20(02) (2020), 2050012. 75 pages.

1 Original Dobrinen’s proof is based on new concept of coding trees.
2 For coding trees a Millken-type theorem is proved using the languag of forcing (based

on Harrington’s proof of the Milliken’s tree theorem)
3 Zucker streamlined and generalized the proof to all classes of structures in finite

binary languages described by finitely many forbidden irreducible substructures.
A. Zucker. On big Ramsey degrees for binary free amalgamation classes. Advances in
Mathematics, 408 (2022), 108585. 25 pages.
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Big Ramsey degrees of (P,≤)

Let P be the class of all finite partial orders.

Theorem (J. H. 2020+)

Every (countable) universal partial order (P,≤) has finite big Ramsey degrees:

∀(O,≤)∈P∃T=T (|O|)∈ω∀k≥1 : (P,≤) −→ (P,≤)
(O,≤)
k,T .

Universality: every countable partial order has embedding to (P,≤).

Proof is based on a new connection between big Ramsey degrees and the
Carlson–Simpson theorem.
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Parameter words

Definition (Parameter word)

Given a finite alphabet Σ and k ∈ ω+ 1, a k -parameter word is a (possibly infinite) word W
in alphabet Σ ∪ {λi : 0 ≤ i < k} such that ∀i ∈ k word W contains λi and for every
j ∈ k − 1, the first occurrence of λj+1 appears after the first occurrence of λj .

Example (2-parameter word)

Σ = {L,X,R}.
LRLλ0λ0Xλ1λ0R

Definition (Substitution)

LRLλ0λ0Xλ1λ0R(LR) = LRLLLXRLR
LRLλ0λ0Xλ1λ0R(X) = LRLXXX

For set S of parameter words and a parameter word W :

W (S) = {W (U) : U ∈ S}.
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Σ = {L,X,R}.
LRLλ0λ0Xλ1λ0R

Definition (Substitution)

LRLλ0λ0Xλ1λ0R(LR) = LRLLLXRLR
LRLλ0λ0Xλ1λ0R(X) = LRLXXX

For set S of parameter words and a parameter word W :

W (S) = {W (U) : U ∈ S}.
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Ramsey theorem for parameter words

The following infinitary version of Graham–Rothschild Theorem is a direct consequence of
the Carlson–Simpson theorem. It was also independently proved by Voight in 1983
(apparently unpublished):

Theorem (Ramsey theorem for parameter words)

Let Σ be a finite alphabet and k ≥ 0 a finite integer. If the set of all finite k-parameter
words in alphabet Σ is coloured by finitely many colours, then there exists a
monochromatic infinite-parameter word W.

By W being monochromatic we mean that for every pair of k -parameter words U,V the
colour of W (U) is the same as colour of W (V ).
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Definition

Given a finite alphabet Σ, a finite integer k ≥ 0 and a finite set k -parameter words, an
envelope of S is every n-parameter word W (for some n ≥ k ) such that

∀w∈S∃uW (u) = w .

Example

Envelopes of {0,000} are: 0λ0λ0, 0λ00, 0λ00λ1, . . . .

Proposition (Envelopes are bounded)

Let Σ be a finite alphabet, and k , s ≥ 0 be a finite integers. Then there exists T (|Σ|, s, k)
such that for every set S of size s of k -parameter words in alphabet Σ there exists an
envelope of S with at most T (|Σ|, s, k) parameters.

Proof.

U = 0 1 1 0 1
V = 0 0 1 1 0 1

Envelope: 0 λ0 1 λ1 λ0 λ2
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Triangle-free graph on 1-parameter words

λ

0λ λ0 λλ

00λ 0λ0 0λλ λ00 λ0λ λλ0 λλλ

Put Σ = {0}.

Definition (Triangle-free graph G)

• Vertices of G are all finite 1-parameter words in alphabet Σ.

• For 1-parameter words u, v satisfying |u| < |v | we put u ∼ v (u adjacent to v ) iff
1 V|U| = λ and
2 for no i ∈ |u| it holds that Ui = Vi = λ.

Key observation 1: G is universal triangle-free graph.
Key observation 2: For every pair of 1-parmeter words U and V and every ω-parameter W

U ∼ V ⇐⇒ W (U) ∼ W (V ).
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Observation

G is a universal triangle-free graph.

Observation

For every infinite-parameter word W it holds that u ∼ v ⇐⇒ W (u) ∼ W (v).
(Substitution is also graph embedding on G → G.)

Theorem (Ramsey theorem for parameter words)

Let Σ be a finite alphabet and k ≥ 0 a finite integer. If the set of all finite k-parameter words in
alphabet Σ is coloured by finitely many colours, then there exists a monochromatic
infinite-parameter word W.

Proposition (Envelopes are bounded)

There exists T (|Σ|, s, k) such that for every set S of size s of k -parameter words in alphabet Σ there
exists an envelope of S with at most T (|Σ|, s, k) parameters.

Theorem (Dobrinen 2020)

The big Ramsey degrees of universal triangle-free graph are finite.

Proof.

Fix graph A and a finite coloring of
(G

A

)
. Because envelopes of copies of A are bounded, apply the

theorem above for every embedding type and obtain a copy of G with bounded number of colors.



Partial order on infinite ternary tree

x0

L RX

Put Σ = {L,X,R} and order L <lex X <lex R.

Definition (Partial order (Σ∗,⪯))

For w ,w ′ ∈ Σ∗ we put w ≺ w ′ if and only if there exists 0 ≤ i < min(|w |, |w ′|) such that
1 (wi ,w ′

i ) = (L,R) and
2 for every 0 ≤ j < i it holds that wj ≤lex w ′

j .

Key observations: ⪯ is universal partial order and is stable for substitution.

Rest of the proof follows the same way as for triangle-free graph.
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forbidden cycles, Extended Abstracts EuroComb 2021.

9 M. Balko, D. Chodounský, N. Dobrinen, J.H., M. Konečný, J. Nešetřil, L. Vena, A. Zucker: Big
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